5) For case 5,1.155 $< t_{11mi}$: the ceiling, best range, and $v = 3^{1/4}$ are in the stratosphere.

For cases 1–5, Fig. 1 shows X/X_R as a function of σ_{11}/σ and t_{11mi} , and Fig. 2 gives v as a function of σ_{11}/σ and t_{11mi} (note that σ_{11}/σ increases as h increases). In Figs.1 and 2, lines for ceiling, best range, and $v=3^{1/4}$ are represented. Finally, in Fig. 3, altitudes for ceiling, best range, and $v=3^{1/4}$ are shown as functions of t_{11mi} .

Conclusions

The best-range altitude for a jet-propelled aircraft with a constant altitude-constant lift coefficient flight program is neither the absolute ceiling altitude nor the altitude in which $v=3^{1/4}$ for maximum thrust setting. The dimensionless maximum thrust in the tropopause based on the initial weight (t_{11mi}) appears as the unique and universal parameter to determine the exact values of ceiling range, best range, ceiling altitude, and best-range altitude. Because of the different models applied in the troposphere and stratosphere for thrust and specific fuel consumption, the best range is placed as follows:

in the troposphere when $t_{11mi} < 1.033$, in the stratosphere when $t_{11mi} > 1.061$, and in the tropopause when $1.033 \le t_{11mi} \le 1.061$. Finally, the difference between the absolute ceiling altitude and the best-range altitude is always 375 m, if the ceiling and the best range are in the stratosphere ($t_{11mi} > 1.061$), and the difference depends on t_{11mi} for the other cases, but maintains the same order of magnitude, e.g., for $h_c = 11,000$ m, $h_c - h_{\rm br} = 365$ m and for $h_c = 8000$ m, $h_c - h_{\rm br} = 398$ m.

References

¹Miele, A., *Flight Mechanics: Theory of Flight Paths*, Vol. 1, Addison-Wesley, Reading, MA, 1962, Chap. 9, pp. 159–171.

²Hale, F. J., *Introduction to Aircraft Performance, Selection and Design*, Wiley, New York, 1984, Chap. 3, pp. 49–54.

³Martínez-García, J. J., and Gómez-Tierno, M. A., "Curso de Mecánica del Vuelo," Publicaciones de la Escuela Técnica Superior de Ingenieros Aeronáuticos, Madrid, Sept. 1993.

⁴"Properties of a Standard Atmosphere," Engineering Science Data Unit, ESDU 77021, Vol. 1b, London, Oct. 1977.

Errata

Improvement to Numerical Predictions of Aerodynamic Flows Using Experimental Data Assimilation

G. Barakos, D. Drikakis, and W. Lefebre
University of Manchester,
Manchester, England M60 1QD, United Kingdom
[J. of Aircraft, 36(3), pp. 611-614 (1999)]

THE authors' affiliation should have been cited as UMIST, Manchester, England M60 1QD, United Kingdom. Also, D. Drikakis's footnote should have read: Lecturer, Mechanical Engineering Department, P.O. Box 88; currently Reader (Associate Professor), Queen Mary and Westfield College, Engineering Department, University of London, London, England E9 4NS, United Kingdom. Senior Member AIAA. AIAA regrets these errors.